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Non-Euclidean plates are thin elastic bodies having no stress-free configuration, hence exhibiting residual
stresses in the absence of external constraints. These bodies are endowed with a three-dimensional reference
metric, which may not necessarily be immersible in physical space. Here, based on a recently developed theory
for such bodies, we characterize the transition from flat to buckled equilibrium configurations at a critical value
of the plate thickness. Depending on the reference metric, the buckling transition may be either continuous or
discontinuous. In the infinitely thin plate limit, under the assumption that a limiting configuration exists, we
show that the limit is a configuration that minimizes the bending content, among all configurations with zero
stretching content �isometric immersions of the midsurface�. For small but finite plate thickness, we show the
formation of a boundary layer, whose size scales with the square root of the plate thickness and whose shape
is determined by a balance between stretching and bending energies.
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I. INTRODUCTION

The classical literature on thin elastic bodies deals prima-
rily with two types of bodies—plates and shells. Mathemati-
cally, a plate can be viewed as a continuous stack of identical
flat surfaces glued together, whereas a shell can be viewed as
a continuous stack of nonidentical �and not necessarily flat�
surfaces glued together. The term non-Euclidean plate was
coined in �1� to describe thin elastic bodies which—like
plates—do not exhibit structural variations across their thin
dimension and yet—unlike plates—do not have a planar rest
configuration. Such elastic bodies can neither be described as
shells, which bear structural variations across their thin di-
mension �e.g., shells do not display reflectional symmetry
about the midsurface� and possess curved stress-free rest
configurations. Non-Euclidean plates exhibit residual
stresses even in the absence of external constraints and are
therefore inherently frustrated.

Elastic bodies having such properties are ubiquitous in
biology. Growing tissues, such as plant leaves, are relatively
thin elastic structures that may exhibit complex equilibrium
configurations in the absence of external forces �2,3�. In ad-
dition, thin elastic bodies which have no stress-free configu-
ration have been engineered in a laboratory �4�, for example,
the environmentally responsive gels shown in Fig. 1.

There are various ways to treat elastic bodies which ex-
hibit residual stress. One way is to treat the residual stress as
a physical field and characterize its properties �5�. Another is
to decompose the deformation gradient into a product of a
plastic �or growth� process, which deforms the body from a
rest configuration into some “virtual” configuration, and an
elastic relaxation from the virtual configuration to the current
configuration �6,7�. A third approach is to decompose the
strain tensor additively into a plastic �or growth� strain, lead-
ing to a virtual configuration, and an elastic strain �8,9�. The
treatment presented here for residually stressed three-
dimensional bodies is very similar to the third approach. All
deformations which are not of elastic nature are completely

ignored, i.e., it is assumed that the virtual configuration
which the growth or plastic deformation led to is known, and
the appropriate elastic relaxation is solved. This in turn en-
ables us to treat large “plastic strains” in a noniterative man-
ner.

A static theory of non-Euclidean plates was developed in
�1� following the fundamental principles laid by Truesdell
�10� and its modern interpretation by Ciarlet and Gratie �11�
and Ciarlet �12�. The starting point in �1� is the formulation
of a covariant three-dimensional elasticity theory in the form
of an energy functional. A first notable property of this en-
ergy functional is its expression in terms of the three-
dimensional metric of the configuration. Specifically, the en-
ergy density is quadratic in the deviation of the metric from
a reference metric. This deviation of the metric is a strain,
which reduces to the standard Green-Saint Venant strain for
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(c)

(d)

(a)

FIG. 1. �Color online� Four elastic plates made of thermore-
sponsive gel as described in �4�. All four structures bear no struc-
tural variation across their thickness. Their radius is 3 cm. The
midsurface of the ��a� and �b�� positively curved disks possess a
reference metric of constant Gaussian curvature K=0.11 cm−2. The
midsurface of the ��c� and �d�� negatively curved surfaces possess a
reference metric of constant Gaussian curvature of the opposite sign
K=−0.11 cm−2. Plates �a� and �c� are 0.75 mm thick, whereas
plates �b� and �d� are 0.6 mm thick.
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bodies that have a rest configuration. The second notable
property of our model is that the reference metric is not
required to have a vanishing Riemannian curvature tensor,
i.e., it may not be immersible in R3 �hence, the name “in-
compatible elasticity theory”�. As a result, there exist no rest
configurations in which the strains vanish everywhere,
hence, the state of frustration. In a second step, a two-
dimensional �2D� elasticity theory is derived, using a gener-
alization of the standard Kirchhoff-Love assumptions
�13,14�. The end result is an energy functional which de-
pends on surface properties of the midplane of the plate,
namely, on the first and second fundamental forms. Like in
the classical Föppl–von Kármán theory �15�, the energy
functional is a sum of a stretching term and a bending term.
The bending term is minimized in flat configurations,
whereas the stretching term measures, in an L2 sense, devia-
tions of the 2D surface metric from a prescribed reference
metric and vanishes only in surfaces which are isometric
immersions of the given 2D metric. The lack of immersibil-
ity of the three-dimensional metric manifests in the lack of a
planar stretching-free configuration.

At this stage, we have a model, which we believe to be
applicable to a large variety of physical and biological sys-
tems, whose properties are governed by essentially two-
dimensional shaping mechanisms. In �1�, a single application
was demonstrated for the case of an unconstrained thin plate,
whose two-dimensional reference metric is that of a punc-
tured spherical cap. A buckling transition was shown to oc-
cur at a critical plate thickness.

In this paper, we study two behaviors exhibited by uncon-
strained non-Euclidean plates. First, we study the transitions
from flat to buckled equilibrium states as the plate thickness
crosses a critical value—the buckling threshold. We derive
an explicit expression for the critical thickness in terms of
the stress field in the planar configuration. An immediate
implication is that the plane-stress solution always becomes
unstable for sufficiently thin plates provided that it is not
trivial, i.e., that the stress is not identically zero. We apply
this analysis to three reference geometries of constant Gauss-
ian curvature of different types—an elliptic, a flat, and a
hyperbolic metric. We show that the buckling transition may
be either continuous �supercritical� or discontinuous �sub-
critical�. In particular, we show that the buckling threshold
may deviate significantly from the so-called crossover point,
which is based on a balance between the plane-stress energy
and the energy that minimizes the Willmore functional. We
show an example in which the crossover thickness underes-
timates the buckling threshold by more than 1 order of mag-
nitude.

Second, we analyze the equilibrium configurations and
energies in the limit where the plate thickness tends to zero.
We show that if a limit configuration exists, then it is the
minimizer of the bending content among all configurations
with zero stretching content, i.e., the Willmore energy mini-
mizer among all isometric immersion of the 2D reference
metric �16�. For a small but finite thickness, deviations from
isometric immersions are more pronounced near the free
boundary of the domain, forming a boundary layer, which we
obtain in explicit form. In particular, the size of this bound-
ary layer is found to scale with the square root of the plate
thickness.

II. THEORY OF NON-EUCLIDEAN PLATES

In this section, we briefly review the modeling of non-
Euclidean plates first described in �1�. The starting point is a
three-dimensional covariant elasticity theory based on the
principles of hyperelasticity �10�: the elastic energy is a vol-
ume integral over an energy density, which depends only on
�i� the local value of the metric tensor and �ii� local charac-
teristics of the material that are independent of the configu-
ration �the use of the metric tensor, rather than the deforma-
tion, as primitive variable was originally proposed by
Antman �17� and was recently advocated by Ciarlet and co-
workers �11,18–21��.

Let ��R3 be an elastic body endowed with a set of
material curvilinear coordinates x= �x1 ,x2 ,x3��D�R3. Let
r denote the mapping from the domain of parametrization D
into �−r�x� is called the configuration—then the induced
Euclidean metric is gij =�ir ·� jr, where �i=� /�xi. Our model
assumes the existence of a reference metric ḡij�x�, such that
the elastic energy density vanishes at a point x if and only if
the actual metric coincides with the reference metric at that
point gij�x�= ḡij�x�. While the reference metric is required to
satisfy the properties of a metric—it is symmetric positive
definite—it is not necessarily immersible in R3, hence the
name of the theory as “incompatible three-dimensional elas-
ticity.”

The strain tensor is defined as half the deviation of the
metric from the reference metric,

�ij =
1

2
�gij − ḡij� .

It coincides with the Green-Saint Venant strain tensor in the
case where there exists a rest configuration and the curvilin-
ear coordinates form a Cartesian parametrization in the rest
configuration, i.e., when ḡij =�ij. For small deviations of the
metric from the reference metric, the energy functional is
truncated at the first nontrivial term, i.e., it is quadratic in the
strain tensor, yielding

E = �
D

w�g���ḡ�dx1dx2dx3, �1�

where

w�g� =
1

2
Aijkl�ij�kl,

and

Aijlk = �ḡijḡkl + ��ḡikḡjl + ḡilḡjk� , �2�

where � ,� are the Lamé coefficients.
Comments.
�1� We adopt the Einstein summation convention whereby

repeated indices imply summation.
�2� Latin lowercase characters i , j , . . . =1 ,2 ,3 are used to

denote indices of three-dimensional tensors. We will use be-
low greek characters � ,� , . . . =1 ,2 to denote indices of two-
dimensional tensors. For any tensor aij, �a� denotes its deter-
minant.
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�3� The tensor ḡij is the tensor reciprocal to ḡij. The rais-
ing and lowering of indices is only defined with respect to
the reference metric. For example, the tensor gij is defined as
ḡikḡjlgkl and not as the reciprocal of gij, which we denote by
�g−1�ij.

�4� The volume element in Eq. �1� is determined by the
reference metric rather than the actual metric. Note that it is
not a priori clear whether the volume element should be
derived from the reference metric or from the actual metric.
In any case, the difference between the two choices is of
higher order in the strain.

�5� The structure �2� of the elastic tensor is imposed by
the assumption of spatial isotropy.

�6� In standard �or “compatible”� nonlinear elasticity, the
energy density is sometimes written in terms of the Euclid-
ean distance of the deformation gradient �r from the group
of proper rotations SO�3�. In the same spirit, the energy den-
sity in an incompatible elasticity theory may be expressed in
terms of

dist��r,Fḡ� ,

where Fḡ is the set of matrices R such that RTR= ḡ.
�7� In summary, given the reference metric ḡ, the elastic

problem is formulated as follows: find the metric g that mini-
mizes the energy functional �1�, subject to the constraint that
it is embeddable, in particular, that the corresponding Rie-
mann curvature tensor vanishes.

With a three-dimensional elasticity theory in hand, we
focus the attention on platelike structures. We define a plate
to be an elastic body for which there exists a parametrization
in which the reference metric takes the form

ḡij = �ḡ11 ḡ12 0

ḡ21 ḡ22 0

0 0 1
	 , �3�

with ḡij independent of x3. The plate is called even if D=S
� �−t /2, t /2� with S�R2 and the thickness t is a constant
and thin if t is much smaller than all other dimensions. We
identify the two-dimensional tensor ḡ�� as the metric tensor
of a surface. By assumption, it is constant across the plate
thickness. It is easy to see that the three-dimensional refer-
ence metric �3� is immersible in R3 if and only if the two-
dimensional reference metric ḡ�� has a zero Gaussian curva-
ture.

To derive a reduced two-dimensional energy density in
terms of the midsurface configuration, we used an adaptation
of the Kirchhoff-Love assumptions �13,14�. We first assume
that the stress is parallel to the midsurface and then that �i3
=0 �the order in which the two assumptions are used is es-
sential�. Integrating the energy functional �1� over the thin
direction, it takes straightforward manipulations to derive an
energy functional which depends on the first and second fun-
damental forms of the midsurface. Specifically, let f�x1 ,x2�
=r�x1 ,x2 ,0� be the immersion of the midsurface then

g�� = ��f · ��f, h�� = ����f · N ,

are the first and second fundamental forms, where N is the
unit vector normal to the midsurface. The energy functional
is given by

W = tES + t3EB, �4�

where

ES = �
S

wSdS EB = �
S

wBdS

are called the stretching and bending contents,

wS =
1

8
A��	��g�� − ḡ����g	� − ḡ	�� ,

wB =
1

24
A��	�h��h	�, �5�

are their respective densities, where

A��	� =
Y

2�1 + 
�
 2


1 − 

ḡ��ḡ	� + ḡ�	ḡ�� + ḡ��ḡ�	� ,

and dS=��ḡ�dx1dx2 is the infinitesimal surface element. The
coefficients Y and 
 are Young’s modulus and the Poisson
ratio, which can be related to the Lamé coefficients. The
elastic energy is positive definite for constant values of Y
�0 and −1�


1
2 .

Comments.
�1� Like in the classical Föppl–von Kármán and Koiter

theories, the energy functional is a sum of �i� a stretching
energy, which scales with the plate thickness and attains a
minimum for an isometric immersion of the midplane sur-
face, and �ii� a bending energy, which scales like the third
power of the thickness and attains a minimum for flat con-
figurations. The equilibrium configuration is the minimizer
of the sum of both stretching and bending energies.

�2� Rather than working with the energy W given by Eq.
�4�, we will work with the energy-per-unit thickness,

E =
W

t
= ES + t2EB. �6�

Henceforth, we will refer to E as “the energy.” Thus the
stretching energy is t independent whereas the bending en-
ergy scales with t2. Obviously, both W and E have the same
minimizer. In addition, we rescale the units of energy by a
factor of Y / �1+
�, such that the tensor A��	� takes the final
form

A��	� =



1 − 

ḡ��ḡ	� +

1

2
�ḡ�	ḡ�� + ḡ��ḡ�	� .

�3� A different derivation of an elastic functional similar
to Eq. �6� may be found in �12�. Equation �6� may be iden-
tified as the elastic energy in the Koiter shell model when the

“reference bending tensor” h̄�� is set to zero �22�.
�4� With the above rescaling, the stretching and bending

density contents can be written in the more compact form
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wS =



8�1 − 
�
�tr�ḡ−1g − I��2 +

1

8
tr��ḡ−1g − I�2� ,

wB =



24�1 − 
�
�tr�ḡ−1h��2 +

1

24
tr��ḡ−1h�2� .

�5� The energy functional is expressed in terms of the first
two fundamental forms g�� and h�� of the midsurface. The
two forms are not independent. They must satisfy the three
Gauss-Mainardi-Codazzi compatibility conditions,

��h�� − ��h�� = ���
	 h	� − ���

	 h	�,

h��h�� − h��h�� = g��������
� − �����

� + ���
	 �	�

� − ���
	 �	�

� � ,

where the Christoffel symbols are given by

���
	 =

1

2
�g−1�	����g�� + ��g�� − ��g��� .

�6� The two-dimensional stress and moment tensors are
defined as

s�� = A��	��	�, m�� =
t2

12
A��	�h	�,

so that

wS + t2wB =
1

2
s����� +

1

2
m��h��.

�7� A surface f�x1 ,x2� will be called an isometric immer-
sion if the two-dimensional metric g�� coincides with the
two-dimensional reference metric ḡ��, i.e., if the stretching
energy is zero. In the case of an isometric immersion, the
bending content density wB can be identified with the density
of the Willmore functional,

wW =
1

24

 4H2

1 − 

− 2K� ,

where H and K are the mean and Gaussian curvatures of the
surface �16�. Note that since K is an isometric invariant, its
value is prescribed by the reference metric.

�8� In summary, the two-dimensional elastic problem is
defined as follows. Given the two-dimensional reference
metric ḡ��, find a symmetric positive definite tensor field
g��, and a symmetric tensor field h�� that together minimize
the energy functional �6� subject to the constraint that the
Gauss-Mainardi-Codazzi equations are satisfied.

III. INFINITELY THIN PLATE LIMIT

In many applications, the elastic body is thin to an extent
that the equilibrium configuration �of its midsurface� remains
practically unchanged upon further thinning. In other words,
we identify an asymptotic regime, which we may call the
infinitely thin plate limit, which in our model corresponds to
the limit t→0. It is important to stress that there are also
opposite cases, where the thinner the body is, the more con-
voluted the equilibrium configuration is, with no evidence

that a t→0 limit exists �e.g., in �23�, a torn plastic sheet
exhibits a self-similar shape, whose cut-off scale is compa-
rable to the thickness of the sheet�.

Under the assumption that ḡ admits an isometric embed-
ding of finite bending content and that a t→0 �weak� limit
configuration exists, we show in Appendix A that the limit is
a minimizer of the Willmore functional among all isometric
embeddings.

The first assumption that the bending content is finite is
nontrivial. If it does not hold then a limit configuration may
not exist. We expect, however, the second assumption, re-
garding the existence of a �weak� limit, to become eventually
superfluous; yet further analysis is required before this as-
sumption can be relaxed.

IV. BUCKLING TRANSITION

A. Plane-stress solution

A configuration is a flat surface if h��=0. The configura-
tion f�x1 ,x2� that minimizes the elastic energy under the con-
straint that the surface be flat is called the plane-stress solu-
tion. It is the minimizer of the stretching content, which is
given by

E =
1

2
�

S
s�����dS =

1

8
�

S
A��	��g�� − ḡ����g	� − ḡ	��dS ,

with respect to all flat metrics g��. To find the minimizer, we
consider an in-plane perturbation of the surface,

f � f + v	�	f .

The reason we perturb the configuration rather than the met-
ric is that the three components of the configuration are in-
dependent, whereas the three entries of the metric tensor are
constrained by the Gauss-Mainardi-Codazzi relations. The
corresponding variation in the metric is

�g�� = ��f · ���v	�	f� + ��f · ���v	�	f� + O�v2� .

Using the fact that ����f ·�	f=���
� g�	, the energy variation is

�E = �
S

s���g�	���v	� + ��	
� g��v	�dS + O�v2� .

Integrating by parts, requiring the first variation to vanish for
any perturbation v	 �and using the identity ��g�	=���

� g�	

+��	
� g���, the Euler-Lagrange equations are

1

��ḡ�
�����ḡ�s��� + ���

� s�� = 0, �7�

with boundary conditions s��n�=0, where n� is the outward
unit vector tangent to the plate and normal to its boundary.
We refer to Eq. �7� as the plane-stress membrane equations.
Note that the plane-stress equations do not depend on the
plate thickness t, which only comes into play when there is a
competition between stretching and bending energies.

Comment. Equation �7� is the Euler-Lagrange equation
associated with the energy functional �6� when t=0. It is
expected to hold in the limit t→0 even for nonflat configu-
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rations. In general, Eq. �7� constitutes two equations for three
unknown functions �the three components of the metric ten-
sor g���, i.e., the system is under determined. In the present
case, the third equation which removes this under determi-
nacy is that the curvatures be identically zero.

Examples. In the following examples, we consider for
simplicity the case of a vanishing Poisson ratio �
=0�, hence
A��	�= 1

2 �ḡ�	ḡ��+ ḡ��ḡ�	�. Denote x1=r and x2=� and con-
sider a reference metric in semigeodesic parametrization of
the form,

ḡ���r,�� = 
1 0

0 �2�r�
� ,

with ��r� yet to be specified. The domain of parametrization
is

�r,�� � �rmin,rmax� � �0,2�� ,

with periodicity in the � axis, so that the topology of the
body is that of a punctured disk.

The equilibrium configuration is expected to preserve the
axis symmetry of the intrinsic geometry; hence we seek
plane-stress solutions of the form

f�r,�� = ���r�cos �,��r�sin �,0� .

Elementary calculations show that the resulting two-
dimensional metric is

g�� = 
����2 0

0 �2 � ,

where ��=d� /dr, from which we derive the two-
dimensional stress tensor,

s�� =
1

2
ḡ�	�g	� − ḡ	��ḡ�� =

1

2

����2 − 1 0

0 ��2/�2 − 1�/�2 � .

�8�

Finally, the Christoffel symbols are given by

���
r = 
��/�� 0

0 − �/��
�, ���

� = 
 0 ��/�
��/� 0

� , �9�

hence the resulting plane-stress equation is

d

dr
���������2 − 1� =

�

�

�2

�2 − 1� , �10�

with boundary conditions ���rmin�=���rmax�=1.
We solve the plane-stress �10� for three families of met-

rics:
�1� A family of elliptic metrics,

��r� =
1

�K
sin�Kr , �11�

where K�0 is the constant Gaussian curvature of the refer-
ence metric. Although such a metric is consistent with an
infinite set of immersions, the immersion that minimizes the
Willmore functional is easily identified—it is a �punctured�
spherical cap.

�2� A family of conical flat metrics,

��r� = �r , �12�

with �1. Here, the isometric immersion that minimizes the
Willmore functional has the form of a truncated cone �a cir-
cular frustum�. Note that although the reference metric is flat,
all isometric immersions have nonzero bending energy due
to the topological constraint �periodicity in the � axis�.

�3� A family of hyperbolic metrics,

��r� =
1

�− K
sinh�− Kr , �13�

where K0 is the constant Gaussian curvature. Unlike the
two former cases, the minimizer of the Willmore functional
among all isometric embeddings is not known explicitly; yet,
it is known that isometric embeddings with finite bending
content do exist �24�.

The plane-stress solutions are shown in Figs. 2–4 for the
domain 0.1�r�1.1. The solutions were obtained by a
simple shooting procedure, with a fourth-order adaptive or-
dinary differential equation �ODE� solver. For each metric,
we plot the solution ��r� along with the spatial profile of the
stress components sr

r�r� and s�
��r� given by Eq. �8� up to the

lowering of one index �the reason for displaying stress com-
ponents with mixed upper and lower indices is that only then
all the components have the same units, hence can be com-
pared�. In the three cases, the solution ��r� is close to linear.
Significant differences are, however, observed in the stress
components.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

r

φ
(a)

0.2 0.4 0.6 0.8 1
−0.08
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−0.04

−0.02

0

r

sr r

(b)

0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

r

sθ θ

(c)

FIG. 2. �a� Plane-stress solution ��r� for the elliptic metric �11� with Gaussian curvature K=1. ��b� and �c�� The corresponding principal
stresses sr

r�r� and s�
��r�.
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For the elliptic metric �Fig. 2�, the body is in a state of
compression along the r direction �sr

r0�, whereas it is com-
pressed in the � direction near the inner radius and stretched
along the � direction near the outer radius. For the flat metric
�Fig. 3�, the situation is similar with compression every-
where along the radial direction, while the angular stress
switches from extension in the vicinity of the inner boundary
to compression at larger radii and again extension in the
vicinity of the outer boundary. Finally, for the hyperbolic
metric �Fig. 4�, the radial stress is everywhere positive �i.e.,
in a state of extension�, whereas the angular stress is in a
state of extension very close to the inner radius and in a state
of compression at large enough distances form the center. In
Fig. 5, we show two toy models generating hyperbolic and
elliptic geometries, which elucidate the behavior of the azi-
muthal �hoop� stress.

B. Stability analysis and buckling threshold

Let f�x1 ,x2� be the plane-stress configuration. Any small
enough perturbation can be decomposed into a sum of in-
plane and out-of-plane displacements,

�f = v	�	f + wN ,

where N is the unit vector normal to the surface. Given such
a perturbation, we calculate in Appendix B the variation in
the elastic energy,

�E = �
S

��wS + t2�wB�dS ,

where the variation in stretching content density �wS is given
by Eq. �B6� and the variation in bending content density �wB
is given by Eq. �B16�; for flat surfaces, these expression
simplify considerably as h��=0. Note that the plane-stress
solution enters in the energy variation both through the stress
s�� and through the metric parameters g�� and ���

	 .
The plane-stress solution is locally stable if the energy

variation is positive for every choice of sufficiently small
�nontrivial� perturbation. As is well-known, local stability
can be determined by considering only the leading-order
terms �in powers of v ,w� in the energy variation. The defin-
ing property of the plane-stress solution is that the terms that
are linear in the in-plane perturbation v	 �the integral of
�wS

�1,0� in Eq. �B6�� vanish for every choice of v	. Thus, to
the leading order, the energy variation decomposes into a
sum of terms that are quadratic in v and terms that are qua-
dratic in w,

�E = �ES
�2,0��v� + ��ES

�0,2��w� + t2�EB
�0,2��w��

+ O�v3,v2w,vw2,w3� ,

where

�ES
�2,0��v� =

1

2
�

S
�s��g	����v	����v��

+ A��	�g��g�����v����	v��dS ,
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FIG. 3. �a� Plane-stress solution ��r� for the flat metric �12� with �=0.58. ��b� and �c�� The corresponding principal stresses sr
r�r� and

s�
��r�.
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FIG. 4. �a� Plane-stress solution ��r� for the hyperbolic metric �13� with Gaussian curvature K=−1. ��b� and �c�� The corresponding
principal stresses sr

r�r� and s�
��r�.
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�ES
�0,2��w� = �

S

1

2
s�����w����w�dS ,

�EB
�0,2��w� = �

S

1

24
A��	������w�����	w�dS �14�

�the subscripts �i , j� refer to the power of v and w�.
Since, to the leading order, the energy variation is decom-

posed into a sum of a v-dependent term and a w-dependent
term, the minimization can be performed on each component
separately. By assumption, the plane-stress solution is the
energy minimizer with respect to in-plane perturbations;
thus, minimum energy variation is obtained for v	=0.

It remains to consider the energy variation due to out-of-
plane perturbations. The bending term �EB

�0,2��w� is always
positive due to the positive definiteness of the tensor A��	�

�26�. Whether the stretching term �ES
�0,2��w� is sign definite

depends on the plane-stress solution. In fact, if the stress
tensor is not everywhere positive definite then there exists a
perturbation w for which �ES

�0,2��w� is negative, and by tak-
ing the plate thickness t sufficiently small, the total-energy
variation can be made negative. We have thus recovered the
following general result.

Given a reference metric, the plane-stress solution is lin-
early stable against buckling, independently of the plate
thickness, only if the stress is everywhere positive definite.
In other words, an infinitely thin plate cannot sustain com-
pression without buckling.

We will now show that the existence of a buckling thresh-
old is always guaranteed, unless the plane-stress solution is
trivial, i.e., s��=0 �which in turn occurs only if the reference
metric is flat�. We start by noting that the plane-stress �7� can
be rewritten as

��
��ḡ�
��g�

s��� = 0,

where �� is the covariant derivative defined in Appendix B.
Let now ��x1 ,x2� be a scalar field satisfying �����=0 and
consider the integral

I = �
S

s������������dS .

The surface element dS is defined in terms of the reference
metric. Writing dS= ���ḡ� /��g����g�dx1dx2, we may now inte-
grate by parts �the covariant derivative satisfies the usual
rules of integration by parts provided that the surface ele-
ment is consistent with the Christoffel symbols�, using the
boundary conditions s��n�=0,

I = �
S

�����ḡ�
��g�

s�����������g�dx1dx2.

Since the covariant derivative satisfies the Leibniz rule for
the derivative of products, it follows from the plane-stress
equations and the definition of � that I=0.

Thus, if there exists a scalar function � that has a nonzero
�covariant� gradient and satisfies �����=0 then the fact that
I=0 implies that s�� is not everywhere positive definite. A
simple way to show that such a function does exist is to
endow the planar equilibrium state with a Cartesian set of
coordinates. Then the covariant derivative reduces into a
simple partial derivative, and the function, say, ��x1 ,x2�=x1

has the desired property.
We may summarize as follows. A sufficiently thin uncon-

strained non-Euclidean plate will always buckle unless the
plane-stress solution is trivial, i.e., s��=0.

Equation �14� provides a characterization of the critical
thickness t= tb at which buckling first occurs. At criticality
t= tb, there exists a nontrivial �i.e., nonuniform� perturbation
which to the leading order is marginally unstable, i.e.,

inf
w�const

�
S
�1

2
s�����w����w�

+
tb
2

24
A��	������w�����	w��dS = 0,

which implies that

tb
2 = sup

w�const

− 12�
S

s�����w����w�dS

�
S
A��	������w�����	w�dS

. �15�

By the above analysis, this supremum is guaranteed to be
non-negative and zero if and only if s��=0.

Comments.
�1� Equation �15� provides a mean for generating lower

bounds for the buckling threshold by choosing appropriate
trial functions w.

�2� The energy variation �14� is a quadratic functional of
w of the form,

(a)

(b)

0.5

-0.5

0

FIG. 5. �Color online� Cartoons of �a� hyperbolic and �b� elliptic
plates. In both cases, two punctured disks are “glued” one inside the
other and forced to remain planar. In the hyperbolic case, the inner
perimeter of the outer disk is too long compared with the outer
perimeter of the inner disk. In such a case, the inner disk is
stretched azimuthally, while the outer disk is compressed azimuth-
ally. In the elliptic case, the inner perimeter of the outer disk is too
short; hence the inner disk is compressed azimuthally, while the
outer disk is stretched azimuthally. The color bar on the right rep-
resents the azimuthal strain at equilibrium �computed numerically�.
A similar cartoon was first presented in �25�.
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�ES
�0,2��w� + t2�EB

�0,2��w� = �w,Hw� , �16�

where �· , ·� is the standard inner product on S and H is a
self-adjoint second-order differential operator. Above the
buckling threshold, H is positive definite. The buckling
threshold tb corresponds to the largest t for which H has a
zero eigenvalue. From a numerical point of view, the latter
characterization is the easier way for computing the buckling
threshold.

Examples. We turn back to the punctured disks considered
in the previous subsection. Note that in all three cases, there
exist negative stress components; hence, a buckling transi-
tion is guaranteed to occur at some finite thickness.

We denote by ��r� the solution to the plane-stress �10�.
For an out-of-plane perturbation w�r ,��, substituting Eq. �9�,
we get

�����w� = �����w� − ���
� ���w�

= 
���w�/���� ��ẇ/���
��ẇ/��� ẅ + ��w�/���

� ,

where we denote by primes derivatives with respect to r and
by dots derivatives with respect to �. Thus,

�ES
�0,2��w� =

1

2
�

0

2� �
rmin

rmax

�srr�w��2 + s��ẇ2��drd� ,

�EB
�0,2��w� =

1

24
�

0

2� �
rmin

rmax �����2�
w�

��
��2

+ 2
�2

�2�
 ẇ

�
��2

+
�2

�4
 ẅ

�
+

w�

��
�2��drd� , �17�

with srr and s�� given by Eq. �8�. Due to the periodicity in �,
it is natural to expand the perturbation in Fourier series,

w�r,�� = a0�r� + �2�
n=1

�

an�r�cos n� + �2�
n=1

�

bn�r�sin n� .

Because Eq. �17� is quadratic in w, both terms reduce into a
sum over Fourier components,

�ES
�0,2��w� = �

n=0

�

��ES
n�an� + �ES

n�bn�� ,

�EB
�0,2��w� = �

n=0

�

��EB
n�an� + �EB

n�bn�� ,

where we define for every function z=z�r�,

�ES
n�z� =

1

2
�

rmin

rmax

�srr�z��2 + s���nz�2�dr ,

�EB
n�z� =

1

24
�

rmin

rmax �����2�
 z�

��
���2

+ 2
�2

�2�
nz

�
���2

+
�2

�4
n2z

�
+

z�

��
�2��dr .

The buckling threshold �15� is given by

tb
2 = sup

�an,bn

− �
n=0

�

��ES
n�an� + �ES

n�bn��

�
n=0

�

��EB
n�an� + �EB

n�bn��

.

Corollary 1. Let

�tn
��2 = sup

z

− �ES
n�z�

�EB
n�z�

.

Then it is clearly the case that tn
�� tb for every n. On the

other hand, tb�maxn tn
�, which together implies that

tb
2 = max

n
sup

z

− �ES
n�z�

�EB
n�z�

.

Thus, unless the buckling transition is degenerate then the
marginally stable perturbation at the bifurcation point in-
volves a single Fourier mode.

Corollary 2. A buckling transition occurs if either srr or
s�� is somewhere negative. Suppose that srr�r��0, i.e., the
radial stress is everywhere extensional. It follows that
�ES

0�z��0 for every z �every axis symmetric perturbation n
=0 increases the stretching energy�. If s�� is somewhere
negative, then there exist nonaxisymmetric perturbations that
reduce the elastic energy. That is, the buckling transition
breaks the axial symmetry.

Elliptic geometry. Consider first the elliptic geometry �11�
for the same parameters as in Fig. 2. The buckling threshold
occurs at tb=0.367 and corresponds to an axis symmetric
mode �n=0�. The critical mode is shown in Fig. 6�a�. In
Table I, we show the buckling threshold tb versus the Gauss-
ian curvature K. As expected, the buckling threshold is
higher the more curved the surface is.

Flat geometry. Consider next the flat geometry �12� for
the same parameters as in Fig. 3. The buckling threshold
occurs at tb=0.387, also for an axisymmetric mode. The
critical mode is shown in Fig. 6�b�.

Hyperbolic geometry. Consider finally the hyperbolic ge-
ometry �13� for the same parameters as in Fig. 4. Since srr

�0, it follows that the critical mode must break the polar
symmetry. Indeed, the least stable mode, which changes sta-
bility at tb=0.1845, has harmonic n=3. It is depicted in Fig.
6�c�. Note how lower is the buckling threshold for the hy-
perbolic geometry. Finally, we show in Table II, the buckling
threshold tb versus the Gaussian curvature K.

C. Buckling threshold versus crossover point

Equation �15� expresses the buckling threshold tb as a
supremum over trial normal deflections. As such, it provides
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an easy way to generate lower bounds for the buckling
threshold. An approximation often used to estimate the buck-
ling threshold is the so-called crossover point between the
lowest-energy isometric immersion and the plane-stress so-
lution. In this section, we show that the crossover point can
often yield a significant underestimate to the buckling tran-
sition.

The equilibrium configuration is the one that minimizes
the energy functional �6�. Two upper bounds that correspond
to extreme cases are the plane-stress solution, which involves
zero bending energy, and the isometric immersion that mini-
mizes the Willmore functional, which involves zero stretch-
ing energy. If g��

PS denotes the plane-stress metric then

E =
1

8
�

S
A��	��g��

PS − ḡ����g	�
PS − ḡ�	�dS � EPS,

whereas if h��
WF is the second quadratic form that minimizes

the Willmore functional �subject to the satisfaction of the
Gauss-Mainardi-Codazzi equations with g��= ḡ��� then the
energy reduces into

E =
t2

24
�

S
A��	�h��

WFh	�
WFdS � t2EWF.

Clearly, if the Willmore energy is lower than the plane-stress
energy then the plane-stress solution is unstable. This pro-
vides a lower bound for the buckling threshold known as the
crossover point,

tb �� EPS

EWF
� tco.

Below this thickness, we expect the solution to approach an
isometric immersion of minimum energy; thus the energy
should be close to EWF. Obviously, in order to evaluate the
crossover point one needs to know the minimizer of the Will-
more functional, which may be highly nontrivial �it requires,

in particular, the solution of an isometric immersion prob-
lem�.

Examples. Consider the elliptic and flat geometries �11�
and �12�, for which the isometric immersion that minimizes
the Willmore functional is explicitly known. It is a surface of
revolution,

f�r,�� = ���r�cos �,��r�sin �,��r�� . �18�

The corresponding metric is

g�� = 
����2 + ����2 0

0 �2 � ,

hence the isometric immersion satisfies

� = �, ����2 + ����2 = 1.

�For the hyperbolic metric �13� ���r��1, hence there is no
axisymmetric isometric immersion.�

For the elliptic geometry �11� with the same parameters as
above, we find

EPS = 0.016 3, EWF = 0.360 9,

from which we get tco=0.2125, which is lower than tb
=0.367 by about 40%. In contrast, we obtain for the flat
metric �12�,

EPS = 0.058 0, EWF = 75.64,

from which we get tco=0.027 7, which is lower than tb
=0.387 by more than 1 order of magnitude. This demon-
strates that in certain cases, the crossover point may provide
a very poor estimate of the buckling threshold. The reason
why the discrepancy between tco and tb may be large is that
the buckling transition is a property intrinsic to the plane-
stress solution not to isometric immersions.
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FIG. 6. Critical modes for the �a� elliptic, �b� flat, �c� and hyperbolic geometries. For both elliptic and flat geometries, the critical mode
is axisymmetric �n=0�; hence, we only display a cross section. In the hyperbolic case, the first mode to destabilize is n=3.

TABLE I. Buckling threshold tb versus the Gaussian curvature K for the elliptic geometry �11�.

K 0.2 0.4 0.6 0.8 1.0 1.2 1.4

tb 0.164 0.233 0.285 0.329 0.367 0.401 0.431

BUCKLING TRANSITION AND BOUNDARY LAYER IN … PHYSICAL REVIEW E 80, 016602 �2009�

016602-9



D. Bifurcation analysis

In this section, we analyze the nature of the buckling tran-
sition. At t= tb, the plane-stress solution is marginally stable.
In particular, there exists a nontrivial perturbation that does
not change the elastic energy up to terms that are quadratic in
v ,w. Specifically,

�ES
�2,0��v� = 0 if and only if v = 0,

and there exists a w̃�0 such that

�ES
�0,2��w̃� + tb

2�EB
�0,2��w̃�

changes sign at t= tb. In fact, as �EB
�0,2� can be identified as an

inner product �cf. Eq. �16��, it follows that for every ŵ,

�ŵ,Hw̃� = 0. �19�

Since w̃ is determined up to both additive and multiplicative
constants, we will define w̃ to have zero mean and be nor-
malized �w̃�2=1, where � · �2 is the L2 norm.

For plate thickness below tb, the flat configuration is lin-
early unstable. �Note, however, that the plane-stress solution
is a critical point of the energy functional for all values of t;
it only ceases to be a local minimum at tb�. The loss of
stability of the flat solution is due to a bifurcation. A branch
of stationary solutions with nonzero bending content merges
with the plane-stress solution at t= tb. The bifurcation is
called supercritical �forward� if the branch of buckled solu-
tions exists for t� tb, in which case, as predicted by the bi-
furcation theory �27�, the buckled solutions near tb are lin-
early stable. For a supercritical bifurcation, the transition
from the plane-stress solution to the buckled solution, as t
decreases below tb, is continuous. The bifurcation is called
subcritical �backward� if the branch of buckled solutions ex-
ists for t� tb. In this case, the buckled solutions near tb are
unstable �this branch of solutions becomes stable after it
turns back�. A transition to linearly stable solutions occurs
discontinuously at t= tb. In particular, discontinuous bifurca-
tions exhibit hysteresis.

To analyze the bifurcation, we need to study the behavior
of the energy functional in the vicinity of the bifurcation
threshold. Since the plane-stress solution is marginally stable
at tb, terms that contain higher order in v ,w must be taken
into account.

Let g�� and s�� be the plane-stress metric and stress and
set t2= tb

2−� with ��0 a small parameter. That is, we con-
sider plate thicknesses just below the buckling threshold. By
the above discussion, the bifurcation is supercritical if for
small � the energy functional has a local minimum for a
nontrivial perturbation whose magnitude vanishes as �↓0. If
the bifurcation is subcritical then the stable solution for �
�0 does not converge to the plane-stress solution as �↓0.
Our working hypothesis is that the bifurcation is supercriti-

cal. The analysis will prove us wrong if this is not the case.
Set once again �f=v	�	 f+wN. Substituting the variations

�B6� and �B16� in stretching and bending content densities,
the variation in total energy takes the form

�E = �ES
�2,0��v� + �ES

�0,2��w� + �ES
�1,2��v,w� + �ES

�0,4��w�

+ �tb
2 − ����EB

�0,2��w� + �EB
�1,2��v,w� + �EB

�0,4��w�

+ O�v3,v2w,vw3,w5� ,

where �ES
�2,0��v�, �ES

�0,2��w�, and �EB
�0,2��w� are given by Eq.

�14� and

�ES
�1,2��v,w� =

1

2
�

S
A��	�g�����v����	w����w�dS ,

�ES
�0,4��w� =

1

8
�

S
A��	����w����w���	w����w�dS ,

�EB
�1,2��v,w� = −

1

12
�

S
A��	������w�����	v�����w�dS ,

�EB
�0,4��w� = −

1

24
�

S
A��	��g−1������w����w������w�

�����	w�dS .

We are seeking the perturbation that minimizes the energy
variation for small ��0. Since we expect, to the leading
order, the minimizer to be proportional to w̃ �the least stable
out-of-plane mode at tb� with a prefactor that vanishes as �
→0, we expand the minimizer in a power series in �, whose
first terms are

v	 = c2ṽ	�p + ¯ ,

TABLE II. Buckling threshold tb versus the Gaussian curvature K for the hyperbolic geometry �13�. In all cases, the critical mode has
harmonic n=3.

−K 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

tb 0.0768 0.110 0.135 0.157 0.175 0.192 0.208 0.222 0.236 0.248

1 1.5 2
1.5

2

2.5

3

3.5

K

c

(a)

0.6 0.7 0.8
0

5

10

15

20

α

c

(b)

FIG. 7. The coefficient c versus the Gaussian curvature K of the
�a� elliptic geometry and the parameter � of the �b� flat geometry.
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w = cw̃�q + w̃̃�r + ¯ , �20�

where the exponents p ,q ,r and the constant c are yet to be
determined. Substituting this expansion into the energy
variation, we get

�E = − c2��EB
�0,2��w̃���2q+1 + c4��ES

�2,0��ṽ���2p

+ c4��ES
�1,2��ṽ,w̃� + tb

2�EB
�1,2��ṽ,w̃���p+2q

+ c4��ES
�0,4��w̃� + tb

2�EB
�0,4��w̃���4q

+ O��2r,�3p,�5q,�2p+q,�p+3q,�2p+1,�4q+1,�p+2q+1� .

The first term on the right-hand side is the quadratic out-of-
plane term, which is, as expected, negative for ��0. For a
supercritical bifurcation, It is balanced by the quartic term,

from which we infer that 2q+1=4q, i.e., q=1 /2. Since the
term that is quadratic in v is positive, it follows that 2p
�2q+1=2. We may then set p=1, with the possible out-
come that we obtain ṽ=0 �i.e., that the v terms are subdomi-
nant�.

We proceed to minimize this expression �with all four
terms of the order �2� with respect to the in-plane perturba-
tion ṽ and the constant c. Note that under the normalization
choice in Eq. �20�, the minimizing ṽ does not depend on c
since the two ṽ-dependent terms are proportional to c4. The
ṽ-dependent terms consist of a positive definite quadratic
term and a linear term, which guarantees the existence of a
nontrivial minimizer �and, in particular, confirms that p=1�.
Once ṽ has been determined, a minimizing c exists if and
only if the sum of the terms proportional to c4 are positive.
Then,

c2 =
1
2�EB

�0,2��w̃�
�ES

�2,0��ṽ� + ��ES
�1,2��ṽ,w̃� + tb

2�EB
�1,2��ṽ,w̃�� + ��ES

�0,4��w̃� + tb
2�EB

�0,4��w̃��
.

Recall that �c is, to the leading order in �, the L2 norm of the
out-of-plane deflection w. If the denominator is negative then
the bifurcation is subcritical and the branch of stable buckled
solutions cannot be found by a local analysis about the
plane-stress solution.

We calculated c for both the elliptic and flat geometries;
recall that in both cases, the critical mode is axisymmetric
n=0. For the elliptic geometry, the bifurcation was found to
be supercritical for the whole possible range of curvatures K
�for large enough K, the surface is no longer an embedding,
as the sphere closes upon itself�. For the flat geometry, a
transition from supercritical to subcritical bifurcations was
found. The bifurcation is supercritical for � in the range
0.58�1 and subcritical for �0.58.

In Fig. 7, we show the value of c versus the Gaussian
curvature K of the elliptic geometry �left� and the parameter
� of the flat geometry �right�. Note that at the transition point
from supercritical to subcritical bifurcation ��0.585, the
coefficient c diverges.

V. BOUNDARY LAYERS IN VERY THIN PLATES

It was shown in Sec. III that provided that a limit equilib-
rium configuration as t→0 exists, it is given by the isometric
immersion that minimizes the Willmore functional. How a
sequence of equilibrium configurations approaches the Will-
more isometry is nontrivial. The convergence is in the Sobo-
lev space W2,2—the space of surfaces with square integrable
second �weak� derivatives �28�. This guarantees �by the
Sobolev embedding theorem� uniform convergence in the
space of once-differentiable embeddings but not in the space
of twice-differentiable embeddings. In other words, second
derivatives may not converge uniformly.

Almost a hundred years ago �see �29�, and references
therein�, it was observed that thin elastic bodies may exhibit
boundary layers, which interpolate between a state of mini-
mum stretching content in the bulk and the zero normal trac-
tion and zero bending moment conditions at the boundary.
Such boundary layers also occur in non-Euclidean plates and
turn out to dominate the deviation from an isometry as t
→0.

Generally speaking, a large thickness implies a bending
energy-dominated configuration �i.e., close to flat�, whereas a
small thickness implies a stretching energy-dominated con-
figuration �i.e., close to an isometry�. Whether a thickness t
is to be considered as “large” or “small” is determined by
comparison with the shortest length scale of the problem,
which may vary with position. For every finite t, there exists
a distance from the boundary �, with respect to which t can-
not be considered small. As a result, we expect a bending
energy-dominated behavior in a strip of thickness � near the
boundary.

We start with a scaling argument. Let h�� be the second
fundamental form of an isometric immersion f�x1 ,x2� that
minimizes the Willmore functional �the metric is, of course,
equal to the reference metric g��= ḡ���. From the point of
view of the bending energy, it would be favorable to have a
flat surface h��=0; however, the second fundamental form
cannot be modified without a modification of the metric, as
the two must satisfy the Gauss-Mainardi-Codazzi equations.
In particular, the Gaussian curvature is an isometric invari-
ant. From the analysis in Appendix B, assuming that the
perturbations do not involve small-scale features, we see that
the variation in stretching content is quadratic in the pertur-
bation fields v ,w, whereas the variation in bending content is
linear in v ,w, i.e.,
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�E � O�v2,w2� + t2O�v,w� .

Since equilibrium is obtained by a balance of the negative
bending contribution and the positive stretching contribution
then v ,w�O�t2� and �E�O�t4�.

These are, however, bulk considerations, where the en-
ergy balance is considered uniformly over the surface. The
question is whether the total elastic energy can be reduced by
a larger yet local change in the bending content density. This
is not possible inside the domain because even a local
change in the second fundamental form involves a nonlocal
change in the metric; hence the gain in stretching energy
exceeds the loss in bending energy. The situation may how-
ever be different at the boundary.

In a bending-dominated region, we expect the curvatures
to deviate from the curvatures associated with the Willmore
isometry by O�1�. As curvatures relate to the metric through
two differentiations, such a deviation over a strip of width tp

induces a metric deviation of O�t2p�. Thus, the variation in
the total energy is of the order

�E � O�t4p� + t2O�1� ,

which yields p=1 /2.
To make this into a rigorous argument, suppose that v

=O�tq� and w=O�tr�, where q ,r�0, both varying over a
boundary layer whose width scales like tp, where p�0. In-
side the boundary layer, the variation in stretching energy
density �B6� is dominated by terms of the order

�wS = O�t2q−2p,t2r,tq+r−p,tq+2r−3p,t3r−2p,t4r−4p� .

Note that this contribution is always positive. On the other
hand, the variation in bending energy density �B14�, which
can become negative, is dominated for small t by terms of
the order

t2�wB = O�tq−p+2,tr−2p+2� .

The exponents q ,r , p are determined such as to maximize the
change in the �negative� bending energy, without the �posi-
tive� stretching energy becoming dominant. That is, if we
define

eS = min�2q − 2p,2r,q + r − p,q + 2r − 3p,3r − 2p,4r − 4p� ,

eB = min�q − p + 2,r − 2p + 2� ,

then we need to choose q ,r , p such to minimize eB subject to
the constraint that eS�eB. It can be shown that the optimal
choice satisfies r=1, p=1 /2, and q�3 /2. That is, the width
of the boundary layer is expected to scale like the square root
of the plate thickness. To minimize the gain in stretching
content, we expect a balance between the ��v� and w terms,
which yields q=3 /2.

Assuming these scaling exponents, we study the structure
of the boundary layer. We consider, as before, a perturbation,
which we decompose as

�f = v	�	f + wN .

Consider now a local parametrization f : �0,�1�� �0,�2�
→R3 of the surface, such that the parametric line x1=0 co-

incides with a boundary of the surface, with the positive x1

axis inside the sample. Moreover, the parametrization of the
unperturbed surface is semigeodesic, i.e., g11=1, g12=g21
=0, and g22=�2; such a parametrization is always possible.
One may also set g22=1 along the boundary �see Fig. 8�.

Since we expect a boundary layer of size �t, we stretch
the positive x1 axis accordingly by introducing a rescaled
coordinate,

X1 =
x1

�t
,

and rescale the perturbations v� ,w, such that the new vari-
ables and their derivatives are all on order of 1,

V	�X1,x2� =
1

t3/2v	��tX1,x2� ,

W�X1,x2� =
1

t
w��tX1,x2� . �21�

By setting, say, �1�O�t1/4� we have a situation where, as t
→0, the local coordinates �x1 ,x2� parametrize a shrinking
annulus which converges to the boundary; whereas in the
rescaled coordinates �X1 ,x2�, the range of X1 in the positive
direction tends to infinity. We are going to show the exis-
tence of a perturbation of such structure that reduces the total
elastic energy.

We then evaluate the variation in energy content densities
inside the boundary layer, i.e., at points x1=�tX1, with X1

�O�1�. To the leading order, the unperturbed metric and the
Christoffel symbols are given by their values at the boundary
and covariant derivatives coincide with partial derivatives.
Since ḡ��=g��, we also have

A��	� =



1 − 

����	� +

1

2
���	��� + �����	� + O�t1/2� .

�22�

Substituting the rescaled variables �21� into the variations
�B6� and �B14� in stretching and bending content densities,
we get

x2

x1

FIG. 8. �Color online� Local parametrization of an annulus
bounded by a boundary of the domain.
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�wS/t2 =
1

2
A1�1���1V����1V�� +

1

2
A��	�h��h	�W2

− A1�	�h	���1V��W +
1

2
A1111��1V1���1W�2

−
1

2
A��11h����1W�2W +

1

8
A1111��1W�4 + O�t1/2� ,

and

�wB =
1

12
A��11h����1�1W� +

1

24
A1111��1�1W�2 + O�t1/2� .

Substituting also expression �22� for the elastic tensor, we
end up with

�wS/t2 =
1

4
���1V2� − 2h12W�2 +

1

2
h22

2 W2 +



8�1 − 
�
�2��1V1�

− 2�h11 + h22�W + ��1W�2�2 +
1

8
�2��1V1� − 2h11W

+ ��1W�2�2 + O�t1/2� ,

�wB =
1

24�1 − 
�
�2�h11 + 
h22���1�1W� + ��1�1W�2� + O�t1/2� .

The variation in the stretching content density is a sum of
squares. The optimal choice of V2 is the one that makes the
first term vanish, namely,

��1V2� = 2Wh12.

Similarly, the optimal choice for V1 satisfies

2��1V1� + ��1W�2 = 2�h11 + 
h22�W ,

so that the variational problem reduces into one for W only,

��wS

t2 �
V1,V2 optimal

=
1

2
�1 + 
�h22

2 W2 + O�t1/2� .

Omitting the O�t1/2� terms, the resulting Euler-Lagrange
equations are

�4W

��X1�4 + 12�1 − 
2�h22
2 W = 0,

with boundary conditions

�2W

��X1�2 = − �h11 + 
h22�,
�3W

��X1�3 = 0,

at X1=0 and W�� ,x2�=0. The solution is

W�X1,2� = −
h11 + 
h22

2�2 e−�X1
�cos �X1 − sin �X1� , �23�

where

� = �3�1 − 
2�h22
2 �1/4.

Reverting to the original unscaled units �x1 ,x2�, the out-of-
plane perturbation w�x1 ,x2� exhibits a boundary layer whose
width �BL is

�BL = �3�1 − 
2��−1/4�t/�h22� .

Substituting the asymptotic boundary layer profile �23� in the
leading order expressions for �wS / t2 and �wB, we get

�wS/t2 =
�h11 + 
h22�2

24�1 − 
�
e−2�X1

�cos �X1 − sin �X1�2,

�wB =
�h11 + 
h22�2

24�1 − 
�
e−2�X1

�cos �X1 + sin �X1��cos �X1

+ sin �X1 − 2e�X1
� . �24�

At the boundary, to the leading order, curvature in the direc-
tion normal to the boundary is given by

h11 + �1�1w = − 
h22.

This leads to the vanishing of the bending moment at the
boundary, i.e., m11=0, which is one of the boundary condi-
tions associated with the energy minimization variational
problem �1�. Note that the normal bending moment along the
boundary is proportional to h11+
h22. If 
=0 and the bend-
ing minimizing isometry satisfies h11=0 then no correction is
needed in order to satisfy the boundary conditions, and we
expect no boundary layer to develop. This fact is manifested
by the vanishing of W in Eq. �23�. For 
�0, however, the
curvatures normal and tangent to the boundary have opposite
signs, which means that the surface is hyperbolic in the vi-
cinity of the boundary. Finally, our analysis breaks down in
the event that h22=0, in which case a boundary layer of
different nature may emerge.

To validate our results, we plot in Fig. 9 the rescaled
deviations in stretching content density �wS / t2 and the devia-
tions in bending content density �wB versus the rescaled co-
ordinate �rmax−r� /�t, for the elliptic geometry �11�, with the
same parameters as in previous sections, namely, rmin=0.1,
rmax=1.1, K=1, and 
=0. The results were obtained by mini-
mizing the full energy functional. We display results for t
=0.01, 0.005, 0.002, and 0.001. As expected, the four res-
caled curves approximately coincide. These numerically
computed curves are compared with our asymptotic expres-
sions �24�.

VI. DISCUSSION

A theory of non-Euclidean plates, applicable to thin elas-
tic sheets that do not have a stress-free rest configuration, has
recently been proposed in �1�. This paper provides a first
mathematical analysis of this model. Two different limits of
such plates are analyzed: �i� the buckling transition, and �ii�
the occurrence of boundary layers in the limit where the plate
thickness tends to zero, and the configuration is expected to
converge to the isometric immersion that minimizes the Will-
more functional.

We proved a general result, whereby any non-Euclidean
plate that does not have a flat stress-free configuration �i.e.,
whose reference metric has nonzero Gaussian curvature�
buckles if the plate is sufficiently thin. The transition from
flat to buckled equilibria may be either continuous or discon-
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tinuous, depending on the particular system. Instances of
both types have been observed.

We showed that in the thin plate regime, the dominant
deviation from the Willmore isometry is governed by a
bending-dominated boundary layer, whose structure was cal-
culated using a boundary layer analysis. In particular, the
width of this boundary layer is determined by both the plate
thickness and the tangential curvature at the boundary of the
Willmore isometry—it scales like the square root of their
product. It would be of interest to observe the occurrence of
such boundary layers in experiments, e.g, in the thermore-
sponsive gels studied in �4�, in order to further validate the
model as describing thin elastic sheets with no stress-free
configuration.

The reported results are of high relevance to the shape
formation in growing biological tissues. Spontaneous buck-
ling and wrinkling of non-Euclidean sheets were suggested
as a mechanism for shaping leaves that are free of external
confinement �2,3,23,30�. These studies were either qualita-
tive or assumed the limit of an infinitely thin sheet. As such,
their results are relevant only to selected cases. Recent stud-
ies suggest and demonstrate that the mechanical stress field
can lead to the differentiation of cells �31–33� and might act
as a regulator of tissue growth �34�. These studies emphasize
the need to know the mechanical state of a tissue of finite
thickness, which undergoes differential growth. Our calcula-
tions of buckling threshold, as well as the prebuckling and
postbuckling stress distribution within plates, can be inte-
grated into the biological picture as inputs that can affect its
future evolution. In particular, the existence of a boundary
layer and its scaling predict thickness-dependent localized
effects near the boundaries of unconstrained growing tissues.
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APPENDIX A: THE t\0 LIMIT

The t→0 limit can be approached in two ways. The first
possibility is to depart from the three-dimensional model,
i.e., the energy functional �1�, and analyze the limit of the
energy minimizers �or approximate energy minimizers� as t
→0. To this end, one would hope to be able to use the
analytical techniques based on � convergence developed in
�35–37�. There is, however, an obstacle that prevents the
direct application of the abovementioned techniques to the
present context. We do not have a reference configuration
with respect to which deviations can be measured. Indeed,
the analysis in �36� relies heavily on a so-called rigidity
property that estimates the distance of the displacement from
a rigid rotation in terms of an integral over local distances
from rotations.

The second alternative is to depart from the two-
dimensional model, i.e., the energy functional �6�. For rea-
sons to be clarified below, we work with an energy func-
tional rescaled with the thickness square,

(r-rmax)/t
1/2

δ w
S
/t2

(a)
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FIG. 9. �Color online� Structure of the boundary layer near the outer boundary r=1.1, for the elliptic geometry �11� and the same
parameters as in previous sections. �a� The left figure shows the rescaled deviation in stretching content density �wS / t2 versus the rescaled
coordinate �rmax−r� /�t calculated for four different thicknesses h=0.01, 0.005, 0.002, and 0.001 �symbols�. The solid �blue� line is the
asymptotic result �24�. The inset shows the unscaled stretching content density deviations versus the unscaled coordinate rmax−r. Note the
logarithmic y scale. �b� The right figure shows the bending content density �wB versus the rescaled coordinate for the same values of the
thickness. The inset shows the unscaled results.
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Ft =
E

t2 =
1

t2ES + EB, �A1�

where the notation Ft makes the t dependence explicit.
Clearly, for every fixed t the functionals E and Ft have the
same minimizers. We view Ft as a one-parameter family of
functionals defined on the Sobolev space W2,2�S ;R3� of sur-
faces whose second �weak� derivatives are in L2�S�. Since
we view every two configurations that differ by a rigid mo-
tion as identical, the space of immersions is in fact the quo-
tient space W2,2�S ;R3� modulo rigid motions. We denote by
Ft�f�, ES�f�, and EB�f� the functionals Ft, ES, and EB evalu-
ated at a configuration f= f�x1 ,x2�. We will also denote by

et = inf�Ft�f�:f � W2,2�S;R3�

the t-dependent greatest lower bounds on the energy.
The two-dimensional elastic problem formulated in the

Sec. II assumes the existence of a family of minimizers ft
�

such that Ft�ft
��=et. Even if such minimizers do not exist, we

can always construct a family of approximate minimizers ft
�,

satisfying,

lim
t→0

�Ft�ft
�� − et� = 0.

Suppose now that the two-dimensional reference metric

ḡ�� assumes an isometric immersion f= f̂ with finite bending
content. Then for every t,

et � Ft�f̂� = EB�f̂� ,

i.e., the greatest lower bounds on the energy are uniformly
bounded. In particular, it follows that

lim
t→0

ES�ft
�� = 0,

which means that the metrics g�ft
�� associated with the family

of approximate minimizers converge, in least-square norm,
to the reference metric ḡ.

The mean-square convergence of the family of metrics, as
t→0, does not guarantee that the family of �possibly ap-
proximately� minimizing configurations has a limit �modulo
rigid motions�. If, however, such a limit does exist then we
show that this limit is an isometric immersion that minimizes
the bending content, i.e., the Willmore functional. Specifi-
cally, let ḡ be a reference metric that assumes a W2,2 isomet-
ric immersion. Let ft

� be a family of approximate minimizers
of the functionals Ft. If the family ft

� �weakly� converges in
W2,2�S ;R3�, as t→0, to a limit f� then f� is a configuration
that minimizes the Willmore functional over all isometric
immersions of the reference metric ḡ.

To prove this theorem we construct a “limit functional,”

F0�f� = �EB�f� g�f� = ḡ

� otherwise,
�

and show that the functionals Ft� converge to F0, as t→0,
with respect to the weak W2,2 topology. It then follows that
every converging sequence of approximate minimizers of Ft
converges to a minimizer of F0 �38�.

To show that Ft� converges to F0, we need to show the
following:

�1� Lower semicontinuity: for every sequence ft that con-
verges to a configuration f �in the weak W2,2 topology�,

lim inf
t→0

Ft�ft� � F0�f� .

�2� Recovery sequence: for every f�W2,2, there exists a
sequence ft that weakly converges to f for which

lim inf
t→0

Ft�ft� = F0�f� .

To prove the lower-semicontinuity property, we note that
the weak W2,2 convergence of ft to f implies the weak con-
vergence of the corresponding metrics g�ft�→g�f�, in the
weak W1,2 topology, which by the Sobolev embedding theo-
rem �28� implies the convergence of the metrics in the strong
C0 topology, i.e., uniform convergence. It follows at once
that the corresponding family of second fundamental forms
weakly converges in L2 to the second fundamental form of f,
h�ft�→h�f�. Since the bending content is equivalent to an L2

norm of the second fundamental form, it follows at once that

lim inf
t→0

EB�ft� � EB�f� .

Now either g�f�= ḡ, in which case

lim
t→0

Ft�ft� � lim inf
t→0

EB�ft� � EB�f� = F0�f� ,

or g�f�� ḡ, in which case

lim inf
t→0

Ft�ft� = � = F0�f� .

To prove the existence of a recovery sequence we take,
given f, the constant sequence ft= f. If g�f�= ḡ then

lim
t→0

Ft�ft� = EB�f� = F0�f� .

If, however, g�f�� ḡ then

lim
t→0

Ft�ft� = � = F0�f� .

Comments.
�1� The assumption that the reference metric can be em-

bedded isometrically with finite bending is by no means
trivial. The Nash-Kuiper embedding theorem only guaran-
tees the existence of a C1 embedding. Embeddings of class
W2,2 have been shown to exist under additional assumptions
�see, e.g., �39��; however, there is no general existence proof
for arbitrary metrics.

�2� We use the weak W2,2 topology because we aim to
eventually prove that every family of approximate minimiz-
ers has a converging subsequence �implying that the limit is
a minimizer of the Willmore functional�. Such a compactness
result cannot possibly hold in the strong W2,2 topology.

�3� A side result of the above theorem is that the Willmore
functional has a minimizer �although not necessarily unique�,
even if the functionals Ft do not have minimizers.
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APPENDIX B: PERTURBATION ANALYSIS

Consider a sufficiently regular surface f�x1 ,x2�. Any small
enough perturbation can be decomposed into a sum of in-
plane and out-of-plane displacements,

�f = v	�	f + wN , �B1�

where N is the unit vector normal to the surface. Given such
a perturbation, we are going to calculate the variation in the
elastic energy.

In order to retain the tensorial nature of the problem �co-
ordinate invariance�, we need to only utilize a covariant dif-
ferentiation. To do so, we need to specify a metric with re-
spect to which the Christoffel symbols are defined. It turns
out that choosing the �natural� induced metric on the surface
yields the most compact form for the variation in energy.

We recall the definitions of the covariant derivatives of a
scalar field W, a contravariant vector V	, a covariant vectors
V	, and a mixed tensor T	

�,

��W = ��W ,

��V	 = ��V	 + ���
	 V�,

��V	 = ��V	 − ��	
� V�,

��T	
� = ��T	

� + ���
� T	

� − ��	
� T�

�. �B2�

Note that �� and �� commute only when operating on sca-
lars. As operators on higher rank tensors, their commutator is
nonzero and relates to the Gaussian curvature of the surface.

To calculate the variation in energy, we need to calculate
the variation in the two fundamental forms. For this, we use
the Gauss-Weingarten equations,

����f = ���
	 �	f + h��N, ��N = − T�

���f ,

where T�
�= �g−1��	h	�. �Note that by our definitions of index

raising, T�
�=h�

� only if g��= ḡ��.� It follows that for a vector
in R3 in the form

v = a���f + bN ,

its derivative is given by

��v = ���a� − bT�
����f + ���b + a�h���N . �B3�

1. Variation in stretching content

Differentiating Eq. �B1� and using Eq. �B3�, we get

���f = ����v	� − wT�
	��	f + ����w� + v	h�	�N , �B4�

from which we derive the variation in the metric,

�g�� = ��f · ���f + ���f · ��f + ���f · ���f

= g�	���v	� + g�	���v	� − 2wh��

+ ����w� + v	h�	�����w� + v�h���

+ ����v	� − wT�
	�g	�����v�� − wT�

�� . �B5�

Substituting into Eq. �5�, we obtain the variation in stretching
content density,

�wS =
1

2
s���g�� +

1

8
A��	��g���g	�

= �wS
�1,0��v� + �wS

�0,1��w� + �wS
�2,0��v� + �wS

�0,2��w�

+ �wS
�1,1��v,w� + �wS

�1,2��v,w� + �wS
�0,3��w� + �wS

�0,4��w�

+ O�v3,v2w,vw3,w5� , �B6�

where the various �wS
�i,j� represent terms of different orders

in v and w,

�wS
�1,0��v� = s��g�	���v	� ,

�wS
�0,1��w� = − s��h��w ,

�wS
�2,0��v� =

1

2
s��h�	h��v	v� +

1

2
s��g	����v	����v��

+
1

2
A��	�g��g�����v����	v�� ,

�wS
�0,2��w� =

1

2
s������w����w� + H��w2�

+
1

2
A��	�h��h	�w2,

�wS
�1,1��v,w� = s��h�	v	���w� − s��h�����v��w

− A��	�h	�g�����v��w ,

�wS
�1,2��v,w� =

1

2
A��	�g�����v�����	w����w� + H	�w2�

− A��	�h��h��v�w��	w�

+ A��	�h��h��w2��	v�� ,

�wS
�0,3��w� = −

1

2
A��	�h�����	w����w� + H	�w2�w ,

�wS
�0,4��w� =

1

8
A��	�����w����w� + H��w2�

����	w����w� + H	�w2� ,

where we have used the symmetry of s�� and A��	�, and
introduced the following new symmetric tensor,

H�� = T�
	h	� = �g−1�	�h��h	�,

which is known as the third quadratic form.
Perturbation of a flat surface. When the unperturbed sur-

face is flat then h��=H��=0, which simplifies Eq. �B6� con-
siderably. In particular, all the terms that are odd functions of
the out-of-plane perturbation w vanish.

Perturbation of an isometric immersion. If the unper-
turbed surface is an isometric immersion g��= ḡ�� then s��

=0, which implies that the lowest-order nonvanishing terms
in Eq. �B6� are
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�wS =
1

2
A��	��g�����v�� − h��w��g	����v

�� − h	�w�

+ O�v3,v2w,vw2,w3� .

Note that it is explicitly assumed here that derivatives of the
deviations v ,w are of the same order of magnitude as the
deviation themselves. This assumption breaks down in the
presence of small-scale features such as boundary layers.

2. Variation in bending content

To calculate the variation in the second quadratic form,
we start with

h�� = ����f · N = − ��f · ��N ,

from which follows that

�h�� = − ���f · ��N − ��f · ���N − ���f · ���N . �B7�

The first term follows directly from Eq. �B4� and the Wein-
garten equation,

− ���f · ��N = h�	���v	� − wH��. �B8�

To calculate the second and third terms, we need to ex-
press the perturbation �N in the unit normal vector. For that,
we use the facts that ��N ·N�=����f ·N�=0; hence,

2N · �N + �N · �N = ���f · N + ��f · �N + ���f · �N = 0.

Setting

�N = �g−1�	�a��	f + bN , �B9�

this yields a closed set of equations for the three coefficients
a	 ,b,

a� = − �1 + b�����w� + v	h�	� − a�����v�� − wT�
�� ,

b = −
1

2
�g−1�	�a	a� −

1

2
b2. �B10�

Applying Eqs. �B3� on Eq. �B9�, we get

���N = ��g−1�	���a� − bT�
	��	f + ���b + T�

�a��N ,

�B11�

where we have used the fact that the covariant derivative of
g�� and its inverse vanishes. It follows at once that the sec-
ond term in Eq. �B7� is given by

− ��f · ���N = − ���a�� + bh��. �B12�

The third term in Eq. �B7� is obtained by combining Eqs.
�B11� and �B4�,

− ���f · ���N = − ����v	� − wT�
	�����a	� − bh�	�

− ����w� + v	h�	�����b� + T�
�a�� .

�B13�

It remains to combine Eqs. �B8�, �B12�, and �B13� to get

�h�� = h�	���v	� − wH�� − ���a�� + bh�� − ����v	� − wT�
	�

�����a	� − bh�	� − ����w� + v	h�	�����b� + T�
�a�� .

�B14�

So far all the relations are exact, i.e., no assumptions have
been made about the smallness of the perturbation, other
than the ability to decompose it in the form �B1�. Equations
�B10� are a set of three quadratic equations for a	 ,b, which
we may solve by successive approximations.

Perturbation of a flat surface. When the surface is flat
h��=0, Eqs. �B10� and �B14� reduce into

a� = − ���w� − b���w� − a����v�� ,

b = −
1

2
�g−1�	�a	a� −

1

2
b2,

and

�h�� = − ���a�� − ���v	����a	� − ���w����b� .

Solving for a� ,b by successive approximation, we get

a� = − ���w� + ���w����v�� +
1

2
�g−1��	���w����w���	w�

+ O�v2,vw2,w4� ,

b = −
1

2
�g−1�	����w���	w� + O�v2,vw,w3� .

Putting it all together, we obtain a simple expression for the
variation in the second form,

�h�� = �����w� − ��	w������v	�

−
1

2
�g−1�	������w���	w����w� + O�v2,vw2,w4� .

�B15�

We then substitute Eqs. �B15� into Eq. �5� to calculate the
variation in the bending content density,

�wB = �wB
�0,2��w� + �wB

�1,2��v,w� + �wB
�0,4��w�

+ O�v3,v2w,vw3,w5� , �B16�

where

�wB
�0,2��w� =

1

24
A��	������w�����	w� ,

�wB
�1,2��v,w� = −

1

12
A��	������v�����w���	��w� ,

�wB
�0,4��w� = −

1

24
A��	��g−1������w����w������w�

�����	w� .
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